Monotonicity in inverse obstacle scattering on unbounded domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness Theorems for Inverse Obstacle Scattering Problems in Lipschitz Domains

For the Neumann and Robin boundary conditions the uniqueness theorems for inverse obstacle scattering problems are proved in Lipschitz domains. The role of non-smoothness of the boundary is analyzed.

متن کامل

Inverse obstacle scattering in the time domain

This work is a study of the extension of an inverse obstacle scattering algorithm for fixed, single-frequency data to multi-frequency time-dependent settings. The inversion algorithm is based on the point source method, which reconstructs scattered fields pointwise with respect to frequency. We use Fourier transforms to obtain the time-dependent scattered fields as superpositions of single-freq...

متن کامل

Complex Spherical Waves and Inverse Problems in Unbounded Domains

This work is motivated by the inverse conductivity problem of identifying an embedded object in an infinite slab. The novelty of our approach is that we use complex spherical waves rather than classical Calderón type functions. For Calderón type functions, they are growing exponentially on one side of a hyperplane and decaying exponentially on the other side. Without extra modifications, they a...

متن کامل

Huygens' principle and iterative methods in inverse obstacle scattering

The main purpose of this paper is to establish relations between three iterative numerical methods based on Huygen’s principle that arose almost simultaneously to solve a particular inverse problem. The inverse problem we consider in this paper is to determine the shape of an obstacle from the knowledge of the far field pattern for scattering of time-harmonic plane waves. In the case of scatter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems

سال: 2020

ISSN: 0266-5611,1361-6420

DOI: 10.1088/1361-6420/ab98a3